Arachidonic acid cascade and epithelial barrier function during Caco-2 cell differentiation.
نویسندگان
چکیده
The small intestinal epithelium is a highly dynamic system continuously renewed by a process involving cell proliferation and differentiation. The intestinal epithelium constitutes a permeability barrier regulating the vectorial transport of ions, water, and solutes. Morphological changes during cell differentiation, as well as changes in the activity of brush-border enzymes and the expression of transport proteins, are well established. However, little is known about the arachidonic acid (AA) cascade underlying epithelial cell differentiation or its role in the development of epithelial barrier function. The main purpose of this study was to examine the activity of the high-molecular-weight phospholipases A(2) (PLA(2)) and cyclooxygenase (COX) pathway during differentiation, with particular emphasis on paracellular permeability. PLA(2) activity, AA release, COX-2 expression, prostaglandin E(2) (PGE(2)) production, and paracellular permeability were studied in preconfluent, confluent, and differentiated Caco-2 cell cultures. Our results show that Caco-2 differentiation induces a decrease in both calcium-independent PLA(2) activity and COX-2 expression and, consequently, a decrease in AA release and PGE(2) synthesis in parallel with a reduction in paracellular permeability. Moreover, the addition of PGE(2) to differentiated cells, at concentrations similar to those detected in nondifferentiated cultures, induces the disruption of epithelial barrier function. These results suggest that AA release by calcium-independent PLA(2), COX-2 expression, and subsequent PGE(2) release are important for the maintenance of paracellular permeability in differentiated Caco-2 cells.
منابع مشابه
Exogenous HIV-1 Nef Upsets the IFN-γ-Induced Impairment of Human Intestinal Epithelial Integrity
BACKGROUND The mucosal tissues play a central role in the transmission of HIV-1 infection as well as in the pathogenesis of AIDS. Despite several clinical studies reported intestinal dysfunction during HIV infection, the mechanisms underlying HIV-induced impairments of mucosal epithelial barrier are still unclear. It has been postulated that HIV-1 alters enterocytic function and HIV-1 proteins ...
متن کاملAn inter-laboratory study to evaluate the effects of medium composition on the differentiation and barrier function of Caco-2 cell lines.
Differentiated human intestinal Caco-2 cells are frequently used in toxicology and pharmacology as in vitro models for studies on intestinal barrier functions. Since several discrepancies exist among the different lines and clones of Caco-2 cells, comparison of the results obtained and optimisation of models for use for regulatory purposes are particularly difficult, especially with respect to ...
متن کاملEpithelial cell kinase-B61: an autocrine loop modulating intestinal epithelial migration and barrier function.
Epithelial cell kinase (Eck) is a member of a large family of receptor tyrosine kinases whose functions remain largely unknown. Expression and regulation of Eck and its cognate ligand B61 were analyzed in the human colonic adenocarcinoma cell line Caco-2. Immunocytochemical staining demonstrated coexpression of Eck and B61 in the same cells, suggestive of an autocrine loop. Eck levels were maxi...
متن کاملCobalt chloride compromises transepithelial barrier properties of CaCo-2 BBe human gastrointestinal epithelial cell layers
BACKGROUND Elevation of the transcription factor HIF-1 is a prominent mediator of not only processes that accompany hypoxia, but also the tumor microenvironment and tissue regeneration. This study uses mediators of "chemical hypoxia" to ask the question whether HIF-1α elevation in a healthy epithelial cell layer leads to leakiness in its tight junctional seals. METHODS Transepithelial electri...
متن کاملEAAT1 is involved in transport of L-glutamate during differentiation of the Caco-2 cell line.
Little is known concerning the expression of amino acid transporters during intestinal epithelial cell differentiation. The transport mechanism of L-glutamate and its regulation during the differentiation process were investigated using the human intestinal Caco-2 cell line. Kinetic studies demonstrated the presence of a single, high-affinity, D-aspartate-sensitive L-glutamate transport system ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of lipid research
دوره 47 7 شماره
صفحات -
تاریخ انتشار 2006